Spectral redemption in clustering sparse networks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral redemption: clustering sparse networks

SFI Working Papers contain accounts of scienti5ic work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peer-­‐reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work done at SFI, inspired by an invited v...

متن کامل

Spectral redemption in clustering sparse networks.

Spectral algorithms are classic approaches to clustering and community detection in networks. However, for sparse networks the standard versions of these algorithms are suboptimal, in some cases completely failing to detect communities even when other algorithms such as belief propagation can do so. Here, we present a class of spectral algorithms based on a nonbacktracking walk on the directed ...

متن کامل

Highly Sparse Reductions to Kernel Spectral Clustering

Kernel spectral clustering is a model-based spectral clustering method formulated in a primal-dual framework. It has a powerful out-of-sample extension property and a model selection procedure based on the balanced line fit criterion. This paper is an improvement of a previous work which sparsified the kernel spectral clustering method using the line structure of the data projections in the eig...

متن کامل

Spectral Clustering in Heterogeneous Networks

Many real-world systems consist of several types of entities, and heterogeneous networks are required to represent such systems. However, the current statistical toolbox for network data can only deal with homogeneous networks, where all nodes are supposed to be of the same type. This article introduces a statistical framework for community detection in heterogeneous networks. For modeling hete...

متن کامل

Spectral community detection in sparse networks

Spectral methods based on the eigenvectors of matrices are widely used in the analysis of network data, particularly for community detection and graph partitioning. Standard methods based on the adjacency matrix and related matrices, however, break down for very sparse networks, which includes many networks of practical interest. As a solution to this problem it has been recently proposed that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 2013

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.1312486110